skip to main content


Search for: All records

Creators/Authors contains: "Cai, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This paper explores cardiac electrophysiological simulations of the monodomain equations and introduces a novel subcycling time integration algorithm to exploit the structure of the ionic model. The aim of this work is to improve upon the efficiency of parallel cardiac monodomain simulations by using our subcycling algorithm in the computation of the ionic model to handle the local sharp changes of the solution. This will reduce the turnaround time for the simulation of basic cardiac electrical function on both idealized and patient‐specific geometry. Numerical experiments show that the proposed approach is accurate and also has close to linear parallel scalability on a computer with more than 1000 processor cores. Ultimately, the reduction in simulation time can be beneficial in clinical applications, where multiple simulations are often required to tune a model to match clinical measurements.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Principal component analysis (PCA) is widely used for dimensionality reduction and unsupervised learning. The reconstruction error is sometimes large even when a large number of eigenmode is used. In this paper, we show that this unexpected error source is the pollution effect of a summation operation in the objective function of the PCA algorithm. The summation operator brings together unrelated parts of the data into the same optimization and the result is the reduction of the accuracy of the overall algorithm. We introduce a domain decomposed PCA that improves the accuracy, and surprisingly also increases the parallelism of the algorithm. To demonstrate the accuracy and parallel efficiency of the proposed algorithm, we consider three applications including a face recognition problem, a brain tumor detection problem using two‐ and three‐dimensional MRI images.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Computational fluid dynamics (CFD) is increasingly used to study blood flows in patient‐specific arteries for understanding certain cardiovascular diseases. The techniques work quite well for relatively simple problems but need improvements when the problems become harder when (a) the geometry becomes complex (eg, a few branches to a full pulmonary artery), (b) the model becomes more complex (eg, fluid‐only to coupled fluid‐structure interaction), (c) both the fluid and wall models become highly nonlinear, and (d) the computer on which we run the simulation is a supercomputer with tens of thousands of processor cores. To push the limit of CFD in all four fronts, in this paper, we develop and study a highly parallel algorithm for solving a monolithically coupled fluid‐structure system for the modeling of the interaction of the blood flow and the arterial wall. As a case study, we consider a patient‐specific, full size pulmonary artery obtained from computed tomography (CT) images, with an artificially added layer of wall with a fixed thickness. The fluid is modeled with a system of incompressible Navier‐Stokes equations, and the wall is modeled by a geometrically nonlinear elasticity equation. As far as we know, this is the first time the unsteady blood flow in a full pulmonary artery is simulated without assuming a rigid wall. The proposed numerical algorithm and software scale well beyond 10 000 processor cores on a supercomputer for solving the fluid‐structure interaction problem discretized with a stabilized finite element method in space and an implicit scheme in time involving hundreds of millions of unknowns.

     
    more » « less
  6. Abstract JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the , , , and oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the and oscillation parameters will be determined to 0.5% precision or better in six years of data collection. In the same period, the parameter will be determined to about % precision for each mass ordering hypothesis. The new precision represents approximately an order of magnitude improvement over existing constraints for these three parameters. 
    more » « less
  7. Abstract Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20 kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3% at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). 
    more » « less